MA4270 Data Modelling
and Computation

| Preliminaries|

Variance = E[(X — E[X])?] = E[X?] — E[X]?

Markov ineq.: Given a > 0 and X nonnegative,
Pr(X >a) < BX

Chebyshev ineq.: Pr(|Y — E[Y]| > b) < %%

Binary Classification

Training data: D = {(x¢,y:) }1;
- where y; € {~1,1} and x; € R?
- where we have n training data

Classifier: fo : RY — {—1,1}

Training error: E£(0) = LS Loss(yt, fo(xt))
- i.e. the proportion of failed training data

Loss(y,9) = 1{g # y}

Linear classifier

Formula: § := sgn(0,x) = sgn 2?21 0;x; (for some fixed O
- i.e. partitioning space with plane passing through origin

D is linearly separable: 30 such that E(6) =0

Perceptron update algorithm:

- current estimate O.y,r

- look at one (x¢,y:)

- if Sgn<ecur7‘7xt> =Yt then 0,c0t == Ocurr

- otherwise set Onert = Ocurr + Y Xt

(intuitively, we are increasing the value of 4,02 x;)

Perceptron algorithm:

- init 0 == 0,k:=0

- For each data point, run the update, and increment k& only
when we made a mistake (repeat after reaching n)

- stop when we do full pass of all data without mistakes

Perceptron algorithm assumptions:

- 3R > 0 such that V¢, ||x¢]] < R (i.e. x; is uniformly bdd)
- 30" and 3y > 0 such that min; y;(0*)Tx; > v (i.e.
stronger lin. separable cond. — bounded away from zero)
Thm: under above assumptions, the algorithm finds

0" such that E(B(k)) = 0 after at most ka0 = Rz”f I”

steps (we make at most k., mistakes)

Cauchy-Schwarz inequality: [(u,v)| < |lu]| - ||Vv]|
(with equality when u and v are in the same direction)

Perceptron proof:
1. show that (8™, 9(k+1)>

. show that He“””

(8", e<’“>>+% so (0%, e“”) > ky

< HGWH +R2 s0 HGWH < kR?

R2[0” >
,YZ

3. use Cauchy-Schwartz ineq. to conclude that k& <
Details:
1. (070" = (9T (0™ + y,x,) =
(0* )Te(k) + 4, (0 )T > (0* )Te(k) +

2. 8¢+ = |je’ +thtH2
He(k)\l2 +2(0%, yix;) + [|xi |2 < [0 + ||, | (since
when a mistake occurs we must have (0 k), yix¢) < 0)

Logistic regression

(0*,0(k)y ky VEy R?|0"|?
312 oo 2 forjvire — TorIR> SO B S T
e Perceptron with offset:
- 0 L |x
Set 0 := {90] and X == [1],
~T ~
sothat 0 x = 07x + 6y and B2 = R2 + 2

¢ (Non-geometric) margin (w.r.t. 0%): v := min; y:(0™)Tx;
(note: usually “margin” means the geometric margin)

¢ Geometric margin (normalised by [|07()): Ygeom = Hgi*\l
(= the shortest distance from a point to the hyperplane)

e Maximum margin classifier (a kind of support vector
machine): find the classifier that makes the margin largest
- maximise (over 0, ) H?/TH subject to Vt, 1,07 x; > ~
- equiv. minimise (over new 0) 1 16| subject to
Vi, 07 x> 1
- which is a convex optimisation problem solvable efficiently
- then the classifier fg(x) = sgn (GTX> is max margin
- and Ygeom = HTl*H (new 0)

Proof of uniqueness: can show that if we have distinct
01, 02 both optimal, then their average most also be
optimal and hence ||0; — 05[> = 0

e Support vector: the xs that touch the margin

Linear classifier with offset

e Formula: § := sgn ((0,x) + 6p) where © € R? and 6y € R

e SVM with offset: minimise (over 0, ) % 16| subject to
Yt ys (GTxt —+ 00) > 1 (note: we don’t penalise for )

e Soft-margin SVM: allows misclassified points by
introducing slack variables ({):
- minimise (over 0, 6y, ) % 16]* + C >0, ¢ subject to
Vi, Yy (GTxt + 90) >1—( and Vt, ¢; > 0 (allows us to pay
a measured penalty for points too close to the margin or
misclassified)
- equiv. minimise (over 8, 6)
Ll07 + O, [1 - (67 + 60 ) |
[2], = max{0, z}
- higher C = favour fewer violations
- C — oo and D is lin. separable = hard-margin SVM
Support vector: the xs that touch the margin, are inside
the margin, or misclassified
- moving these points will change the line
- if we remove all points except those from support vector,
the classifier will remain the same

where
+

e Loss: (where z = y; <9Txt + 90>)
- 0-1 loss: Loss(z) = 1{z <0}
- Hinge loss: Lossp(z) = [1 — 2]

(it is convex)

e Logistic function:
g(Z) = 1+ifz

e Soft decision: We answer using a probability space in [0, 1]
(logistic regression is a soft-decision algorithm)

e Probability (given 0, 0)):
P(y =1 | X) - g<eTX T 90) - 1+cxp(_(19Tx+9o))
Ply=-1|x)=1-Ply=1[x)= 3

Hence P(y | x) = g(y- (GTX + 90))

Note: Log (%) =0"x+ 6

1+exp(9Tx+00)

e Multiplying © and 6y by a large constant makes the
probability further away from 0.5 (i.e. the graph gets
steeper, but the decision boundary remains the same)

e To determine 0 and 6, we generally use “maximum
likelihood”:
L(9790 | D) = H?:l P(yt | X5 9790)
(generally good enough if n is large)
Equiv. L(0,00 | D) = P(y1,- -, Yn | X1,---,%n;0,00)
max likelihood: (0, 60y) = argmaxg o, L(0,6s | D)
- To solve:
arg maxg g, L(6,60 | D)
= arg maxg g, [T Py | x450,60)
= argmaxg g, >, Log P(y; | x+;0,6)
= argming o, 3"/, Log(1 + exp(—y:(87x; + 6))))
.. which can only be solved numerically using gradient
descent, because it is convex
- We can call it a_“loss”:
Logistic loss: Loss(z) = Log(1 + e™#)

¢ Gradient descent for max likelihood logistic regression:
a5 Log (1 + exp(—4:(07x¢ + 60))) = —ye (1 = Plys | x40, 60))
2 Log(1+ exp(—y:(07x¢ +69))) = —yex¢ (1 — Py | x4 0,60))
- Thus:
05t — 05 + 0w (1 - P(yt | x; 00, 9(()”)))

() . 9 4 Ny Xy (1 — P(yt | x5 ) 0(()")))

e Stochastic gradient descent:
- For large data sets, iterating all points at every step is too
costly, so we instead pick one (or a few) data points only
(at random, or cycle, etc):

o5 05y (1 P (e | 0,657 )
01« 0 4 nyx, (1 - P(iyt | x50, 0 n))>

e For separable data, max likelihood will lead to an
arbitrarily steep logistic regression function (i.e.
L(0,00 | D) — 1 as 0,0y — oo is the max likelihood), so we
want to prevent this using regularisation

¢ Regularisation: Change the expression to
arg ming g, 31, Log(1 + exp(—yi(87x, + 60))) + 3|62
(where X is the regularisation parameter) (prevents overly
large 0)

e Logistic regression can be extended to multi-class
classification

Gradient descent

e Def: Want to find z = argmin, s f(z) for some evaluation
function f

e Algorithm: At the current point, evaluate the current
gradient, and move a bit in the steepest downhill direction
- update operation: z(t1) « z() — Vv f(z())
e
where Vf(z®):= | : | and 7 is the step size
of
Ozn

- guaranteed to find the minimum if the function is convex

Linear regression

e The output is now over R

e Training data: D = {(x¢, )},
- where y; € R and x; € R¢

e Objective: To learn a prediction rule (line): g = 07x + 6,

e Gaussian model: Add some noise, because the
relationship may not be perfect
-y =(0")Tx+ 0% + 2, where z ~ N(0,02)
- PDF of a normal distribution:
N (z;p1,02) = s exp (=21

202 202
-So P(y | x) =N (y; (0")Tx + 65, 02)

¢ Using maximum likelihood to derive least squares
formula (works for Gaussian noise model only):

(6 bo, 0 2 | D)
_P(yla"'7yn ‘ Xla"'7xn;9590702)
- t 1 (yt |Xt;97007a2)
—0Tx,—0, 2
S | H (-’/2020)>
Log(L(0,0y,0% | D))

2
= —2 Log(2mo?) — Tb Sy (yt —oTx, — 00)

.. s0 0 and 6, do not depend on o?

.. 8o equiv. to finding

(é, é0> = argming g, > ;4 (yt - <9TXt + 90))2

(note that (GTxt + 90) is simply the predicted value of y
using the line defined by (é, éo>, so it is the formula for

least squares regression)

e Closed form solution (for the prediction/estimate):

Solve J(©) :== >}, (yt - (GTXt + 90))2 =y - X©|?,
where:

Y1
Yn

then to solve for min poinﬁ, we make the gradient equal 0:
v (Ily - X®||2) =-2X"(y —X©) =0

= X'y =XTX0©

— @ = (XTX) ' XTy
((XTX)f1 X7 is called the pseudo-inverse of X)
Prediction rule: § = éTx + 0o

T
11

eR"; X = 6Rnx(d+1);@=[a]€Rd+l

P
x, 1

(so @ is linear in y but not X)

e Maximum likelihood with high n: low bias and low variance
Maximum likelihood with low n: low bias and high variance

Bias & Variance

e Bias: systematic error
Variance: random error



How good is our predicted ©7

e Goal: minimise E [H@ - O

2
} (i.e. mean squared error)

(note: © is our estimate; @* is actual)

+2|Jlo- 26|

variance

¢ Bias-variance decomposition:

d

mean sq. error

Note: E [©] - ©* = <A (XTX + 1) "' ©°

GRS

bias squared

To show that least squares estimate is unbiased
- Combining all data points for a true value (©*):
y=(0")Tx + 0} + z into a vector, we get y = XO* + z
- substitute equation into © = (XTX)_1 XTy to get
0 = (X'X) ' X" (XO* +2) = ©* + (X"X) ' X"z

- and since E [z] = 0, we have E [@} = O

- so we conclude that © is an unbiased estimate for ©*

Variance term may be very high if X7X has small
eigenvalues (intuitively, X7 X is “almost singular”)

2 oo = cor o]

Cov [(i)]

E [H@ ~e[e] m - T (xTX) ]

.. and thus variance high when X7X has small eigenvalues

=0 (XTX) l,so

Trading bias for variance — Regularisation (with
2110]1?) (aka. “ridge regression”):
- we want to penalize large 6 (but not )

(.40)

= argming g i (yt - <9Txt + 90)) +3 Z; 1 g
= argming 4, ||y — XO|* + 3 0|

Closed form solution: ©® = (X7X + )\I)fl XTy

We want to find the best A (perhaps try a few different A
and check performance on validation data)

|Non-linear Rules|

e Given D := {(xs,y:)};_,, we can map it to some

D' = {(Pp(x1),y)};—,, and map back the found 6 and 6,

- for example, if we want a quadratic expression, we can let
& (x) = [z,22]T; if we want a circle, we can write an
equation of a circle

- if d > 1, we can also consider cross terms, e.g. x1xo terms
- if there are too many features, it might be prone to
overfitting

Kernel methods

e We want the new dataset to be k(x;,x;) ==
where

- ¢ is a “feature map”

- we compute it without explicitly calculating ¢ (x;)

- it works nice because inner products capture geometry

- this trick works only when the rule becomes linear on the
new dataset

- note: the fresh x whose y is being predicted usually has
its kernel with existing data points calculated too, and goes
into the prediction function

(d(x:), d(x5)),

E.g.: If ¢(z) = (1,v/3z,v/322, 23), then we have kernel
(D (2), d(2)) = (1+z2)’

For degree p polynomial and d dimensions, we have the
polynomial kernel k(x,x’) = (1 + (x,x/))P

E.g.: String kernel, let k(x,x’) be the number of words
appearing in both strings

Intuitively (non-rigorously), k(x,x’) should be a kind of

measure of similarity

Def: k(x,x’) is a kernel: k(x,x') =
¢ (possibly infinite-dimensional)

(b (x), b (x) for some

Positive semidefinite: k : R x RY — R is positive
semidefinite: for any x, x’, k(x,x’) = k(x’,x), and for any

X1,...,Xm (for any m), the Gram matrix
k(x1,x1) k(x1,%Xm)

K= is positive semidefinite
k(Xm,X1) E(Xom,Xm)

(note: positive semidefinite matrix = symmetric matrix)

Positive semidefinite matrix: (two equiv.
characterisations):

- Vz, zTKz >0

- all upper-left square submatrices have nonnegative
determinant, or

- all eigenvalues are nonnegative

Thm k is a kernel <= k is positive semidefinite
(useful for proving if something is not a valid kernel)
Proof for “ = 7": let K = ®7® where

P = [d(x1),...,D(x,)], and observe that K is the Gram
matrix; then observe that

Vz,2 Kz = 27 ®T ®z = (®z)7 (®z) = | ®z||> > 0 (so K is
positive semidefinite)

To show that k(x,x’) is a kernel: (any one)

- explicitly find ¢

- use kernel closure properties below

- (rarely, and hard) show that k is positive-semidefinite

To show that k(x,x’) is not a kernel: (any one)
- k is not symmetric
- k(x,x) < 0 for some x

(x,x) k(x,x")
- Find some x,x’ such that det ([k(x x) k(. XI)D <0

Deriving more kernels: If kq, ko are kernels, then:
- V functions f (real-valued), f(x)k1(x,x’)f(x’) is a kernel
- k1 (x,x) + ka(x,x') is a kernel

- k1 (x,x")k2(x,x') is a kernel

(proof of first: let d(x) = P, (x)f(x) and show that
($(x), d(x)) = fF(X)ka(x, X)d()x/)))
(proof of second: let ¢ (x) = b, (x )] and show that

(%), ®(xX')) = k1(x, %) + ka(x,x'))

roof of third: let ¢ (x) be a vector containing entries
i(x) = ¢(1)(x)¢§2)( ) for each 4, j, and show that
(x), §(x')) = k1 (x,x")k2(x, %))

RBF kernel (aka. Gaussian kernel):

k(x,x') = exp(— 4 |x - x/||?)

- measures distance between points; larger (and tends to 1)
as X' = x

- has infinite number of features (¢p(x)), and it is not easy
to determine

(®
(p
bij
(&

¢ RBF kernel (aka. Gaussian kernel) with length
scale: k(x,x') = exp(—4|Ix — x'[|?)
- £ = length scale, increasing ¢ means that points don’t
need to be too close in order to be considered similar

e Some “kernelizable” learning algorithms:
- k-nearest neighbours: Want to make a prediction for x
(where § € {—1,1}). Given x, we find the k nearest points,
and predict ¢ by majority rule. This is kernelizable because
||Ix — x¢|| can be expressed as inner products.
- Linear (ridge) regression: After solving ®, want to predict
(®,x) given x ; observe that
(XTX 4+ ALy) ' X7 = X7 (XXT 4 AL,) "', so
e =Xx" (XXT + AIn)fl Y, SO
§=x"XT (XXT + )\In)_l y (for no-offset case). Observe
that XX7 is just the Gram matrix with standard inner
products (i.e. a matrix of inner products), and x7 X7 is a
vector of inner products, so we can replace them with inner
products and this prediction rule (for §) would be
kernelisable, i.e. § = k(x)(K + AL,) !y where K is the

k(x,x1)
Gram matrix and k(x) = l : ]
k(x,x5)

Convex Optimisation (for Kernel SVM)

e D C R%is a convex set:
vx,x' € D,YA € 0,1, x+ (1 —\)x' €D

e f:D — R (where D C R is convex) is a convex function:
Vx,x" € D,VA € [0,1], fAx+(1-M)x') < Af(x)+(1-N) f(x))
(for concave function, change “<” to “>")

e Equiv. def if f differentiable:
) > f(x) + V)T (x — )
(i.e. the second point lies above the tangent from the first
point)

e Equiv. def if f twice differentiable: V2f(x) > 0 (i.e. is

positive semidefinite) (for 1D case, f”(z) > 0)

e Properties of convex functions:
- f1, fo convex =
Vaq,ae > 0, a1 f1(x) + ag fa(x) convex
- f1,- - fn convex = max; f;(x) convex
- (Jensen’s): f(E[X]) < E[f(X)]

e Convex optimisation: minimise some convex function
subject to some constraints:
Minimise (over x)) fo(x) (where fp convex) such that fy(x)
subject to f;(x) <0 (where f; convex) and h;(x) =0
(where h; affine (i.e. linear))

e Lagrangian: L(x,A,v) = fo(x) + >, Aifi(x) + >, vihi(x)
(A and v are called “dual variables”; can think of it like A
and v are penalties that we want to minimise)
min max L(x,A,v) = max minL(x,A, V) due to nice

X A, V,A>0 A VA0 X

original problem equivalent dual problem
convexity properties satisfying Minimax theorem; the RHS
is often easier to solve
(note: miny L(x, A, v) is usually called g(A, v))
(if the min point of x has A; = 0, then f; is inactive)

¢ Karush-Kuhn-Tucker (KKT) Conditions (that the

minimum point (x*, A%, v*) must satisfy):

- Primal feasibility: fi(x*) <0Vi=1,...
ha(x*) =0 Vi=1,...,1Meq

- Dual feasibility: A} >0Vi=1,...

y Mineq and

y Mineq

- Complementary slackness: A!f;(x*) =0Vi=1,...,Mineq
(intuitively, either the min. pt. is on the boundary
(fi(x) = 0) or the constraint is inactive (AF = 0))

- Vanishing gradient:

Vo) + Sl NV £i(x7) 4+ 0 v Vhy(x) = 0

In the general case this is necessary but not sufficient, but

in the convex case it is both necessary and sufficient

To solve a convex optimisation problem:

- write out the Lagrangian

- solve the dual problem by finding g(A, v), and then taking
the maximum over A, v

E.g. Hard margin SVM: minimise (over 0, 6y) 1 o]
subject to Vt, y; <9Txt + 00) >1

- L(8,80.) = 417 + I, (1 = 567+ )

- 890 =317 (—=M\y) = 0 (equate to zero because we want
the min point)

- g—é =0 -, (Myx:) =0 (equate to zero because we
want the min point), so 0% = "7 (Myext)

- observe that at the min point,

Sy A1 = (87 x4 + 6o))

=3 A = i Aewe® X — S0 Aewebo
= Y A (1 veixe)) e = B > Ay

- t 1
7*0
n T —n B
= t 1 At — (aszl(AsysXs)) Zt:l )\tytxt
Zt P

- so at the min point, L(0,60,A) = 31" Ay — 1[|0]]2 =

D1 A~ % Dot Dot AsAYsYLXT Xy

- more formally,

g(?\) = { i A=

(since if D"} ; Ay # 0 we can choose 6 to be very big or

very small, in order to make 6y >, Adyy — —00)

- to find the maximum of g(A) (over A > 0), solve

maximiseq Yy q 0 — & D 0_1 Dy q syl xT'x; subject
~——

kernelisable

fon g AsAeyayex X i 357 Ay =0
—00 otherwise

toa; >0and ), apyy =0

- then the classifier is © = Zt 1 QeYXe, and Gy = - — 0Tx,
for any point (x;,y;) where a; > 0 (i.e. 3,(07x, + 90) =1,
i.e. x; is a support vector)

Computation of Primal vs Dual SVM:
Primal: Solving an optimisation problem with d variables
and n (or 2n) constraints (better for n > d)

Dual: Form %2 kernel values (each of the x;, x; pairs), then
solve an optimisation problem with n variables and n + 1
constraints (better for d > n if can compute k(x,x)
efficiently)

Boosting

e Decision stump: A linear classifier where the classifier

must be either horizontal or vertical (with offset) (no
diagonal lines)

h(x;0) = sgn(s(zr — 0y)) where 0 = (s, k, 6y), where
se{-1,1}, ke{l,...,d}, 6 €R

(intuitively, s is the direction, k is the dimension index,
is the threshold/offset)

- we want to determine good ©

Combined classifier: § := sgn (Zi\le amh(x; Gm))
where «,,, > 0 are weights (i.e. the vote multiplier of base
learner m)



- we want to determine good 04, ...,

Adaboost algorithm for learning 04, ...,

Ap,...,0pf

- Input: D = {(x¢, y:) }}_, number of iterations M
1. Init weights wo(t) ==

2. Form=1,...,M:
a. Choose h(-; 0

(i.e. minimise the Weight of all misclassified p01ntb)
Wm—1 (t) =

argming y ., (— yth(xt,e))wm 1(t) since
—yeh(x;0) = 2- My # hix;0)} —
b. &, =1 5 log 1= EL’” where &,, = Y"

(note: argming >."

t?éh(xty

(plot of &y, against &,,:

c. Update weights: w,y, (t)
where Z,,, = S 1| Wy, (t)e ¥eh(xe:0m)am g the
normalization factor (i.e. we want y ., | w,,(t) = 1) (note:
e®m > 1 and e~ % < 1 since G,, > 0, so it increases relative
weights for misclassified points w.r.t. current decision

stump)

3. The output classifier is fys(x) =

Training error: fraction of misclassified points:

LS H{yefm(x) <0}

%fortzl,...,n

m) as 0,, = argming » "

3

2.5+

Pl

1.5+

1

0.5+

1—(1—2,) =exp (% log (1 —(1- 2ém)2)) <

exp (—% (1- 2ém)2) = exp (—2 (3 - ém)2>
(note: to remove log, use formula log(1 + a) < a Va € R)
5. Substitute into step 2 end, we get

B 60 < 0F S exp (2550 (3 = ém)’)

Claim: Zt:y#h(xfém) Wy, (t) = 3 (hence the same 0 will

not be chosen twice in a row)
Proof: LHS = 1 <= Y7 | (—y:h(x¢; 0))wy,(t) = 0, and
we have > | (—yrh(x4;0))wp, () =

Zt:yz=h(m;ém) wm(t) + Zt:yt%h(xt;ém)(_wm(t)) =

—&m

1
Zt:yt:h(xt;ém) Zwm_l(t)e -
Qm —

1
by h (030,) Zoy Wm—1(t)e

2 (e7%m (1 — &) —emé,,) = 0 (last step is by definition

of &,, being chosen to minimise the expression obtained in
step 3 of Adaboost proof)

Theory

o T

0 0.1

1 —yth(x¢;0)am
= g Wi (e TR Om)E

Theorem: After M iterations,

training error < exp <—2 Z%:l (% =

(in particular, if &, <

Adaboost proof:

1. Bound 0-1 loss with the exponential loss:
Iy Yy fu(x) <0} < 2570 exp(—yefu(x)) (proof:

it is obvious)

% — v Vm, then

training error < exp (—2M 72); and since training error
must be a multiple of L, if exp (—2M~?) <
error must be zero (i.e. everything classified correctly))

2. By weight update formula,

M
wy (t) = 3 T

exp(—yeh(xe;0

Ef,vl[:l amh(x; ém)

Note: Adaboost never overfits points for some reason

L then training
n

)O‘M)

Zm,
1 exp(—= 20 yeh(%630m)dm)

1 exp(—ys far (%))

n [T _i Zm

Hence 1 =37 wu(t) =

Ly exp(—yefu (%))
Combining with step 1,

n TIM_,
1 Z{ 1CXP( yfflw(x))

T1Y_1 Zm
M
= Hm:1 Zm

%Z?:l Wy fm(x) <0} < H% 1

= it (e RO A
+Etyt h(x130,,) Wm— 1(t)e™m =

Zty,;ﬁh(x, 8,,) Wm— 1(t)e”

. Zt'yt;éh(xtyevn) Wi~ 1(t) +

e_am Et:yt:h(xﬁém) U}m_l(t) = émedm —+ (1 — ém)e_&m
So we want to pick &,, to minimise Z,,

(proof skipped... the optimum &,

4. Substitute &, to step 3, and get

1 —_<m m P—
Zm—&'m\/ £ +(1_5m)\/1i

Em

Em

Concentration

Concentration: General idea: to show how well things
concentrate around the mean:
P[|Y — m| > t] < TailBound(t)

Consider Y, = 23" | X; where E[X;] = y and
Var[X;] = 02 and X, are i.i.d.

Law of large numbers: P[|Y;, — p| > ¢] — 0 as n — oo for

any € >0
Central limit theorem: P[|Y;, — p| > ] —20(—%) as

n — oo where ® is the standard norrnal c.d.f. (inaccurate
for very small probabilities)
Large deviations theory (important):

Pz > ] < B

P[|Y,, — u| > €] < e~™%() (this is true for any ¢ and any n,

not just for large n)

Basic inequalities:
Markov’s ineq.: If Z is a nonnegative rand. var., then

t

Markov’s ineq. for functions: If Z is a rand. var. and ¢ is a

nonnegative increasing function, then

PIZ > 1] <P[p(Z) > ¢(1)] < <z><(tZ>)]

Chebyshev’s ineq.: If Z is a rand. var., then

P[|Z —E[Z]| > 1] < Vafr[z] (proof by letting ¢(t) = t? and
replacing Z by |Z — E[Z]|)
Chernoff bound: If Z is a rand. var. and A > 0, then

P[Z > t] < e ME[e*] (proof by letting ¢(t) = eMt)

Sum of independent random variables:
Z=X1++X,and Y, = 17 where X; are i.i.d.:

Chebyshev’s ineq.: ]P’HYn — ]E[ H > 8] < Var[X]

Chernoff bound: P[Z > ne] < exp(—n - 1/JX( )) where

Uk (t) = maxy (At — ¥x (A)) and ¥x (A) = Log E[e*]

(e.g. for Gaussian (X ~ N(0,0%)), vx(\) = Ao 2, S0
i (t) = 202,50 P[Z > ne] <exp( 2),so
P(|Z| > ne] < Qexp( )

(note that for o —sub—Gaussian, we instead assume that
Yx(N) < )‘22"27 and the same result holds)

Hoeffding’s ineq.: Z = X; + - -- + X, where X; are i.i.d.

and X; € [Cl,i, bi]:

(a2 2o ity

If a; = a and b; = b for all ¢ then:

P[L|Zz-E[Z] > ] <26Xp<( 2”8)2)
If a; = 0 and b; = 1 for all 7 then:

P[:1Z - E[Z]] > €] < 2exp (—2ne?)

Statistical learning theory

e Underfitting: High training error (and hence high test
error)
Overfitting: Low training error but high test error

e Setup:
- Data drawn from distribution Pxy (unknown), i.e.
D = {(x¢t,y:) }1—q1, where each (x¢,y:) ~ Pxy and i.i.d.
- Loss function ¢(y, §) where § = f(x) (where f is our
classifier) (¢ could be any loss function)

- Training error (empirical risk):
Ru(f) = 5 24y Ly, [(x1))
- Test error (true risk): R(f) =

E[f(y, f(x))] where

(z,y) ~ Pxy
- R(f) = Ruf + (BR(f)— Raf)
—~— S~~~ SN—
Test error Training error  Generalisation error

(Generalisation error is large if we overfit)
- Consider algorithm that outputs f € F (if F is too small
then we underfit; if F is too large then we overfit)

e Task: Let form = argmingc» R, (f), want to find out if
ferm has small R(f) too? Will show that

R(form) < R(f*) 4+ & with probability > 1 — ¢ provided that

n >n(e,d) (where f* = argmin; » R(f), and 7 is known
as the sample complexity) (called the “probably
approximately correct” (PAC) guarantee) (the analysis is

true even for the worst case Pxy, so for good distributions,

it may be possible to use less data points)
F is PAC-learnable iff this is attainable for all ¢ > 0, § > 0

with @ < oo (regardless of Pxy) (when |F| is small enough,

this is usually possible)
Realisable: y; = f(x;) for all 4, for some f € F

Agnostic: Just compare with the (ideal) f* € F (we usually

use this)

e PAC guarantee for finite F: If |F| < co and
0(y,9) € [0,1], then F is PAC-learnable (i.e.
R(ferm) < R(f ) + & with probability > 1 — §) with
n7(e.0) = & log %7

(equivalently, (ferm) ~R(f*) <e </ 2log 2

e Proof of PAC guarantee for finite F:
1. Fix f € F. Let z; = £(y;, f(x;)) Vi. Then since (x;,y;)
are i.i.d., z; is also i.i.d.. Since z; € [0,1], and
E[z;] = E[l(y;, f(xi))] = R(f), we apply Hoeffding’s ineq to
get P H% Sz~ R(f)‘ > gg] < 2exp (—2nef). Then
observe that L 3" | z; = L5 4(y;, f(x;)) = Ru(f), so
BRa(f) — RU)| > eo] < 2exp (~2ned).
2. Take the union bound:
P [User {1Ba(f) = R > 20}] < 2|Flexp (~2ne})
3. So we pick § = 2 |F|exp (—2ned), son = 252 log Q‘Fl
4. Suppose |R,(f) — R(f)|<ey VfeF (holds with
probability > 1 — 6), then: R(ferm) — R(f*) =
R(ferm) - Rn(ferm) + Rn(ferm) -

e VC Dimension: dyc = dyc(F) = largest k such that
3Ixq,...,x; that F shatters (i.e. largest k such that
3Ix1,...,Xg for which all combinations of labels (i.e.
f(x1),..., f(xx)) can be produced by classifiers in F)

(to determine the VC dimension, must show that k works
but k + 1 does not work)

e Corollary for Finite F: If F is finite, dyc < log, |F|

e Sauer’s lemma: Effective #f in F < Zdvc (M
Slightly weaker version: Effective #f in F < (n + 1)ve

e PAC guarantee for infinite F: Assuming 0-1 loss, F is
1
PAC-learnable with nz (e, §) = € - elF) sy

e Converse guarantee: If dyc = oo, then F is not
PAC-learnable (though there may be certain choices of Pxy
where learning might still work)

e Examples
- Linear classifier (without offset): dyc = d (the dimension
of the space)
- Linear classifier (with offset): dyc =d+1

Unsupervised Learning

Rn(f7)+ Ra(f7) — R(f7)

<eo <0 <eo
2|F
< 2g9. Hence we let ¢ := 2¢g, so n = % %.

e Shattering: A set of points x1,...,Xy, is said to be
shattered by F if [{(f(x1),...,f(xx)) | f € F}| = 2F

e Training data: D = {x:},_,

¢ K-means clustering:
Goal: Partition D into clusters Dy, ..., Dy such that the
associated cluster centres uy,..., g € R? minimise
({D o Am o) = Zle > _xeD, [ — ”j”2 (ie
minimise the sum of squared distance from the respective
cluster centres)

¢ K-means algorithm:
1. Minimise .J ({D; }<, {u;},) wort. {D;}, for fixed
{u;}7<, (ie. associate each data point with the cluster
centre closest to it)
2. Minimise J ({D, } 1,{uj 1) wor.t. {uj}K for fixed
{D;}I<, (i.e. set each cluster centre to the mean of the
data points associated with it, i.e. p; = ﬁ erDj X)
3. Repeat until no change
Notes:
- initially, choose {u;}}<, at random
- K-means finds a local minimum for J

e Distribution learning:
Goal: Estimate a distribution p(x) that models the data
well (either p.m.f. (discrete) or p.d.f. (continuous))
- assume p(x) is determined by 0, i.e. p(x;0)
- to find é, we use maximum likelihood, i.e.
6 = arg max []1_, p(xi; ©) = argmaxg 31, log p(x;; 6)



