
MA4270 Data Modelling
and Computation

Preliminaries

� Variance = E[(X − E[X])2] = E[X2]− E[X]2

� Markov ineq.: Given a > 0 and X nonnegative,

Pr (X ≥ a) ≤ E[X]
a

� Chebyshev ineq.: Pr (|Y − E[Y]| ≥ b) ≤ σ2
Y

b2

Binary Classification

� Training data: D = {(xt, yt)}nt=1

- where yt ∈ {−1, 1} and xt ∈ Rd
- where we have n training data

� Classifier: fθ : Rd → {−1, 1}

� Training error: Ê(θ) = 1
n

∑n
t=1 Loss(yt, fθ(xt))

- i.e. the proportion of failed training data

� Loss(y, ŷ) = 1{ŷ 6= y}

Linear classifier

� Formula: ŷ := sgn〈θ,x〉 := sgn
∑d
i=1 θixi (for some fixed θ

- i.e. partitioning space with plane passing through origin

� D is linearly separable: ∃θ such that Ê(θ) = 0

� Perceptron update algorithm:
- current estimate θcurr
- look at one (xt, yt)
- if sgn〈θcurr,xt〉 = yt then θnext := θcurr
- otherwise set θnext := θcurr + ytxt
(intuitively, we are increasing the value of ytθ

T
nextxt)

� Perceptron algorithm:
- init θ(0) := 0, k := 0
- For each data point, run the update, and increment k only
when we made a mistake (repeat after reaching n)
- stop when we do full pass of all data without mistakes

� Perceptron algorithm assumptions:
- ∃R > 0 such that ∀t, ‖xt‖ ≤ R (i.e. xt is uniformly bdd)
- ∃θ∗ and ∃γ > 0 such that mint yt(θ

∗)Txt ≥ γ (i.e.
stronger lin. separable cond. – bounded away from zero)
Thm: under above assumptions, the algorithm finds

θ(k) such that Ê(θ(k)) = 0 after at most kmax = R2‖θ∗‖2
γ2

steps (we make at most kmax mistakes)

� Cauchy-Schwarz inequality: |〈u,v〉| ≤ ‖u‖ · ‖v‖
(with equality when u and v are in the same direction)

� Perceptron proof :
1. show that 〈θ∗,θ(k+1)〉 ≥ 〈θ∗,θ(k)〉+γ, so 〈θ∗,θ(k)〉 ≥ kγ
2. show that

∥∥∥θ(k+1)
∥∥∥2 ≤ ∥∥∥θ(k)

∥∥∥2 +R2, so
∥∥∥θ(k)

∥∥∥2 ≤ kR2

3. use Cauchy-Schwartz ineq. to conclude that k ≤ R2‖θ∗‖2
γ2

Details:
1. (θ∗)Tθ(k+1) = (θ∗)T (θ(k) + ytxt) =

(θ∗)Tθ(k) + yt(θ
∗)Txt ≥ (θ∗)Tθ(k) + γ

2. ‖θ(k+1)‖2 = ‖θ(k) + ytxt‖2 =

‖θ(k)‖2 + 2〈θ(k), ytxt〉+ ‖xt‖2 ≤ ‖θ(k)‖2 + ‖xt‖2 (since

when a mistake occurs we must have 〈θ(k), ytxt〉 ≤ 0)

3. 1 ≥ 〈θ∗,θ(k)〉
‖θ∗‖·‖θ(k)‖ ≥

kγ

‖θ∗‖·
√
kR2

=
√
kγ

‖θ∗‖·R , so k ≤ R2‖θ∗‖2
γ2

� Perceptron with offset:

Set θ̂ :=

[
θ
θ0

]
and x̂ :=

[
x
1

]
,

so that θ̂
T
x̂ = θTx + θ0 and R̂2 = R2 + c2

� (Non-geometric) margin (w.r.t. θ∗): γ := mint yt(θ
∗)Txt

(note: usually “margin” means the geometric margin)

� Geometric margin (normalised by ‖θ∗‖): γgeom := γ
‖θ∗‖

(= the shortest distance from a point to the hyperplane)

� Maximum margin classifier (a kind of support vector
machine): find the classifier that makes the margin largest
- maximise (over θ, γ) γ

‖θ‖ subject to ∀t, ytθTxt ≥ γ
- equiv. minimise (over new θ) 1

2 ‖θ‖
2

subject to

∀t, ytθTxt ≥ 1
- which is a convex optimisation problem solvable efficiently

- then the classifier fθ(x) = sgn
(
θTx

)
is max margin

- and γgeom = 1
‖θ∗‖ (new θ)

Proof of uniqueness: can show that if we have distinct
θ1, θ2 both optimal, then their average most also be
optimal and hence ‖θ1 − θ2‖2 = 0

� Support vector: the xs that touch the margin

Linear classifier with offset

� Formula: ŷ := sgn (〈θ,x〉+ θ0) where θ ∈ Rd and θ0 ∈ R

� SVM with offset: minimise (over θ, θ0) 1
2 ‖θ‖

2
subject to

∀t, yt
(
θTxt + θ0

)
≥ 1 (note: we don’t penalise for θ0)

� Soft-margin SVM: allows misclassified points by
introducing slack variables (ζ):

- minimise (over θ, θ0, ζ) 1
2 ‖θ‖

2
+ C

∑n
t=1 ζt subject to

∀t, yt
(
θTxt + θ0

)
≥ 1− ζt and ∀t, ζt ≥ 0 (allows us to pay

a measured penalty for points too close to the margin or
misclassified)
- equiv. minimise (over θ, θ0)
1
2 ‖θ‖

2
+ C

∑n
t=1

[
1− yt

(
θTxt + θ0

)]
+

where

[z]+ := max{0, z}
- higher C =⇒ favour fewer violations
- C →∞ and D is lin. separable =⇒ hard-margin SVM
Support vector: the xs that touch the margin, are inside
the margin, or misclassified
- moving these points will change the line
- if we remove all points except those from support vector,
the classifier will remain the same

� Loss: (where z = yt

(
θTxt + θ0

)
)

- 0-1 loss: Loss(z) := 1{z ≤ 0}
- Hinge loss: Lossh(z) := [1− z]+ (it is convex)

Logistic regression

� Logistic function:
0

0.5

1

-6 -4 -2 0 2 4 6
g(z) := 1

1+e−z

� Soft decision: We answer using a probability space in [0, 1]
(logistic regression is a soft-decision algorithm)

� Probability (given θ, θ0):

P (y = 1 | x) = g
(
θTx + θ0

)
= 1

1+exp(−(θTx+θ0))
P (y = −1 | x) = 1− P (y = 1 | x) = 1

1+exp(θTx+θ0)

Hence P (y | x) = g
(
y ·
(
θTx + θ0

))
Note: Log

(
P (y=1|x)
P (y=−1|x)

)
= θTx + θ0

� Multiplying θ and θ0 by a large constant makes the
probability further away from 0.5 (i.e. the graph gets
steeper, but the decision boundary remains the same)

� To determine θ and θ0, we generally use “maximum
likelihood”:
L(θ, θ0 | D) =

∏n
t=1 P (yt | xt;θ, θ0)

(generally good enough if n is large)
Equiv. L(θ, θ0 | D) = P (y1, . . . , yn | x1, . . . ,xn;θ, θ0)
max likelihood: (θ, θ0) = arg maxθ,θ0 L(θ, θ0 | D)
- To solve:
arg maxθ,θ0 L(θ, θ0 | D)
= arg maxθ,θ0

∏n
t=1 P (yt | xt;θ, θ0)

= arg maxθ,θ0

∑n
t=1 LogP (yt | xt;θ, θ0)

= arg minθ,θ0

∑n
t=1 Log(1 + exp(−yt(θTxt + θ0)))

... which can only be solved numerically using gradient
descent, because it is convex
- We can call it a “loss”:
Logistic loss: L̃oss(z) = Log(1 + e−z)

� Gradient descent for max likelihood logistic regression:
∂
∂θ0

Log(1 + exp(−yt(θTxt + θ0))) = −yt (1− P (yt | xt;θ, θ0))
∂
∂θ Log(1 + exp(−yt(θTxt + θ0))) = −ytxt (1− P (yt | xt;θ, θ0))
- Thus:
θ
(i+1)
0 ← θ

(i)
0 + η

∑n
i=1 yt

(
1− P

(
yt | xt;θ(n), θ

(n)
0

))
θ(i+1) ← θ(i) + η

∑n
i=1 ytxt

(
1− P

(
yt | xt;θ(n), θ

(n)
0

))
� Stochastic gradient descent:

- For large data sets, iterating all points at every step is too
costly, so we instead pick one (or a few) data points only
(at random, or cycle, etc):

θ
(i+1)
0 ← θ

(i)
0 + ηyt

(
1− P

(
yt | xt;θ(n), θ

(n)
0

))
θ(i+1) ← θ(i) + ηytxt

(
1− P

(
yt | xt;θ(n), θ

(n)
0

))
� For separable data, max likelihood will lead to an

arbitrarily steep logistic regression function (i.e.
L(θ, θ0 | D)→ 1 as θ, θ0 →∞ is the max likelihood), so we
want to prevent this using regularisation

� Regularisation: Change the expression to
arg minθ,θ0

∑n
t=1 Log(1 + exp(−yt(θTxt + θ0))) + λ

2 ‖θ‖
2

(where λ is the regularisation parameter) (prevents overly
large θ)

� Logistic regression can be extended to multi-class
classification

Gradient descent

� Def : Want to find ẑ = arg minz∈Rd f(z) for some evaluation
function f

� Algorithm: At the current point, evaluate the current
gradient, and move a bit in the steepest downhill direction
- update operation: z(i+1) ← z(i) − η∇f(z(i))

where ∇f(z(i)) :=

∂f
∂z1
...
∂f
∂zn

 and η is the step size

- guaranteed to find the minimum if the function is convex

Linear regression

� The output is now over R

� Training data: D = {(xt, yt)}nt=1

- where yt ∈ R and xt ∈ Rd

� Objective: To learn a prediction rule (line): ŷ = θTx + θ0

� Gaussian model: Add some noise, because the
relationship may not be perfect
- y = (θ∗)Tx + θ∗0 + z, where z ∼ N(0, σ2)
- PDF of a normal distribution:
N (z;µ, σ2) = 1√

2πσ2
exp

(
−(z−µ)2

2σ2

)
- So P (y | x) = N

(
y; (θ∗)Tx + θ∗0 , σ

2
)

� Using maximum likelihood to derive least squares
formula (works for Gaussian noise model only):
L(θ, θ0, σ

2 | D)
= P (y1, . . . , yn | x1, . . . ,xn;θ, θ0, σ

2)
=
∏n
t=1 P (yt | xt;θ, θ0, σ2)

=
∏n
t=1

1√
2πσ2

exp

(
− (yt−θTxt−θ0)

2

2σ2

)
Log(L(θ, θ0, σ

2 | D))

= −n2 Log(2πσ2)− 1
2σ2

∑n
t=1

(
yt − θTxt − θ0

)2
... so θ and θ0 do not depend on σ2

... so equiv. to finding(
θ̂, θ̂0

)
= arg minθ,θ0

∑n
t=1

(
yt −

(
θTxt + θ0

))2
(note that

(
θTxt + θ0

)
is simply the predicted value of y

using the line defined by
(
θ̂, θ̂0

)
, so it is the formula for

least squares regression)

� Closed form solution (for the prediction/estimate):

Solve J(Θ) :=
∑n
t=1

(
yt −

(
θTxt + θ0

))2
= ‖y −XΘ‖2,

where:

- y =

[y1
...
yn

]
∈ Rn ; X =

 xT1 1

...
...

xTn 1

 ∈ Rn×(d+1) ; Θ =
[
θ
θ0

]
∈ Rd+1

then to solve for min point, we make the gradient equal 0:

∇
(
‖y −XΘ‖2

)
= −2XT (y −XΘ) = 0

=⇒ XTy = XTXΘ

=⇒ Θ =
(
XTX

)−1
XTy (so Θ is linear in y but not X)

(
(
XTX

)−1
XT is called the pseudo-inverse of X)

Prediction rule: ŷ = θ̂
T
x + θ̂0

� Maximum likelihood with high n: low bias and low variance
Maximum likelihood with low n: low bias and high variance

Bias & Variance

� Bias: systematic error
Variance: random error

How good is our predicted Θ?

� Goal: minimise E
[∥∥∥Θ̂−Θ∗

∥∥∥2] (i.e. mean squared error)

(note: Θ̂ is our estimate; Θ∗ is actual)

� Bias-variance decomposition:

E
[∥∥∥Θ̂−Θ∗

∥∥∥2]︸ ︷︷ ︸
mean sq. error

=
∥∥∥E [Θ̂]−Θ∗

∥∥∥2︸ ︷︷ ︸
bias squared

+E
[∥∥∥Θ̂− E [Θ̂]∥∥∥2]︸ ︷︷ ︸

variance

Note: E
[
Θ̂
]
−Θ∗ = −λ

(
XTX + λI

)−1
Θ∗

� To show that least squares estimate is unbiased
- Combining all data points for a true value (Θ∗):
y = (θ∗)Tx + θ∗0 + z into a vector, we get y = XΘ∗ + z

- substitute equation into Θ̂ =
(
XTX

)−1
XTy to get

Θ̂ =
(
XTX

)−1
XT (XΘ∗ + z) = Θ∗ +

(
XTX

)−1
XT z

- and since E [z] = 0, we have E
[
Θ̂
]

= Θ∗

- so we conclude that Θ̂ is an unbiased estimate for Θ∗

� Variance term may be very high if XTX has small
eigenvalues (intuitively, XTX is “almost singular”)

E
[∥∥∥Θ̂− E [Θ̂]∥∥∥2] = Tr

[
Cov

[
Θ̂
]]

, and

Cov
[
Θ̂
]

= σ2
(
XTX

)−1
, so

E
[∥∥∥Θ̂− E [Θ̂]∥∥∥2] = σ2 Tr

[(
XTX

)−1]
... and thus variance high when XTX has small eigenvalues

� Trading bias for variance – Regularisation (with
λ
2 ‖θ‖

2) (aka. “ridge regression”):
- we want to penalize large θ (but not θ0)(
θ̂, θ̂0

)
= arg minθ,θ0

∑n
t=1

(
yt −

(
θTxt + θ0

))2
+ λ

2

∑d
j=1 θ

2
j

= arg minθ,θ0 ‖y −XΘ‖2 + λ
2 ‖θ‖

2

Closed form solution: Θ̂ =
(
XTX + λI

)−1
XTy

We want to find the best λ (perhaps try a few different λ
and check performance on validation data)

Non-linear Rules

� Given D := {(xt, yt)}nt=1, we can map it to some
D′ := {(φ(xt), yt)}nt=1, and map back the found θ and θ0
- for example, if we want a quadratic expression, we can let
φ(x) = [x, x2]T ; if we want a circle, we can write an
equation of a circle
- if d > 1, we can also consider cross terms, e.g. x1x2 terms
- if there are too many features, it might be prone to
overfitting

Kernel methods

� We want the new dataset to be k(xi,xj) := 〈φ(xi),φ(xj)〉,
where
- φ is a “feature map”
- we compute it without explicitly calculating φ(xi)
- it works nice because inner products capture geometry
- this trick works only when the rule becomes linear on the
new dataset
- note: the fresh x whose y is being predicted usually has
its kernel with existing data points calculated too, and goes
into the prediction function

� E.g.: If φ(x) = (1,
√

3x,
√

3x2, x3), then we have kernel
〈φ(x),φ(x′)〉 = (1 + xx′)3

For degree p polynomial and d dimensions, we have the
polynomial kernel k(x,x′) = (1 + 〈x,x′〉)p

� E.g.: String kernel, let k(x,x′) be the number of words
appearing in both strings

� Intuitively (non-rigorously), k(x,x′) should be a kind of
measure of similarity

� Def : k(x,x′) is a kernel: k(x,x′) = 〈φ(x),φ(x′)〉 for some
φ (possibly infinite-dimensional)

� Positive semidefinite: k : Rd × Rd → R is positive
semidefinite: for any x, x′, k(x,x′) = k(x′,x), and for any
x1, . . . ,xm (for any m), the Gram matrix

K :=

k(x1,x1) · · · k(x1,xm)
...

. . .
...

k(xm,x1) · · · k(xm,xm)

 is positive semidefinite

(note: positive semidefinite matrix =⇒ symmetric matrix)

� Positive semidefinite matrix: (two equiv.
characterisations):
- ∀z, zTKz ≥ 0
- all upper-left square submatrices have nonnegative
determinant, or
- all eigenvalues are nonnegative

� Thm k is a kernel ⇐⇒ k is positive semidefinite
(useful for proving if something is not a valid kernel)
Proof for “ =⇒ ”: let K = ΦTΦ where
Φ := [φ(x1), . . . ,φ(xn)], and observe that K is the Gram
matrix; then observe that
∀z, zTKz = zTΦTΦz = (Φz)T (Φz) = ‖Φz‖2 ≥ 0 (so K is
positive semidefinite)

� To show that k(x,x′) is a kernel: (any one)
- explicitly find φ
- use kernel closure properties below
- (rarely, and hard) show that k is positive-semidefinite

� To show that k(x,x′) is not a kernel: (any one)
- k is not symmetric
- k(x,x) < 0 for some x

- Find some x,x′ such that det
([

k(x,x) k(x,x′)

k(x′,x) k(x′,x′)

])
< 0

� Deriving more kernels: If k1, k2 are kernels, then:
- ∀ functions f (real-valued), f(x)k1(x,x′)f(x′) is a kernel
- k1(x,x′) + k2(x,x′) is a kernel
- k1(x,x′)k2(x,x′) is a kernel
(proof of first: let φ(x) = φ1(x)f(x) and show that
〈φ(x),φ(x′)〉 = f(x)k1(x,x′)f(x′))

(proof of second: let φ(x) =

[
φ1(x)
φ2(x)

]
and show that

〈φ(x),φ(x′)〉 = k1(x,x′) + k2(x,x′))
(proof of third: let φ(x) be a vector containing entries

φij(x) = φ
(1)
i (x)φ

(2)
j (x) for each i, j, and show that

〈φ(x),φ(x′)〉 = k1(x,x′)k2(x,x′))

� RBF kernel (aka. Gaussian kernel):
k(x,x′) = exp(− 1

2‖x− x′‖2)
- measures distance between points; larger (and tends to 1)
as x′ → x
- has infinite number of features (φ(x)), and it is not easy
to determine

� RBF kernel (aka. Gaussian kernel) with length
scale: k(x,x′) = exp(− 1

2`‖x− x′‖2)
- ` = length scale, increasing ` means that points don’t
need to be too close in order to be considered similar

� Some “kernelizable” learning algorithms:
- k-nearest neighbours: Want to make a prediction for x
(where ŷ ∈ {−1, 1}). Given x, we find the k nearest points,
and predict ŷ by majority rule. This is kernelizable because
‖x− xt‖ can be expressed as inner products.
- Linear (ridge) regression: After solving Θ, want to predict
〈Θ,x〉 given x ; observe that(
XTX + λId

)−1
XT = XT

(
XXT + λIn

)−1
, so

Θ̂ = XT
(
XXT + λIn

)−1
y, so

ŷ = xTXT
(
XXT + λIn

)−1
y (for no-offset case). Observe

that XXT is just the Gram matrix with standard inner
products (i.e. a matrix of inner products), and xTXT is a
vector of inner products, so we can replace them with inner
products and this prediction rule (for ŷ) would be
kernelisable, i.e. ŷ = k(x)(K + λIn)−1y where K is the

Gram matrix and k(x) =

[
k(x,x1)

...
k(x,xn)

]

Convex Optimisation (for Kernel SVM)

� D ⊆ Rd is a convex set:
∀x,x′ ∈ D,∀λ ∈ [0, 1], λx + (1− λ)x′ ∈ D

� f : D → R (where D ⊆ Rd is convex) is a convex function:
∀x,x′ ∈ D,∀λ ∈ [0, 1], f(λx+(1−λ)x′) ≤ λf(x)+(1−λ)f(x′)
(for concave function, change “≤” to “≥”)

� Equiv. def if f differentiable:
f(x′) ≥ f(x) +∇f(x)T (x′ − x)
(i.e. the second point lies above the tangent from the first
point)

� Equiv. def if f twice differentiable: ∇2f(x) ≥ 0 (i.e. is
positive semidefinite) (for 1D case, f ′′(x) ≥ 0)

� Properties of convex functions:
- f1, f2 convex =⇒
∀α1, α2 ≥ 0, α1f1(x) + α2f2(x) convex

- f1, . . . fn convex =⇒ maxi fi(x) convex
- (Jensen’s): f(E[X]) ≤ E[f(X)]

� Convex optimisation: minimise some convex function
subject to some constraints:
Minimise (over x)) f0(x) (where f0 convex) such that f0(x)
subject to fi(x) ≤ 0 (where fi convex) and hi(x) = 0
(where hi affine (i.e. linear))

� Lagrangian: L(x,λ,ν) = f0(x) +
∑
i λifi(x) +

∑
i νihi(x)

(λ and ν are called “dual variables”; can think of it like λ
and ν are penalties that we want to minimise)
min
x

max
λ,ν,λ≥0

L(x,λ,ν)︸ ︷︷ ︸
original problem

= max
λ,ν,λ≥0

min
x
L(x,λ,ν)︸ ︷︷ ︸

equivalent dual problem

due to nice

convexity properties satisfying Minimax theorem; the RHS
is often easier to solve
(note: minx L(x,λ,ν) is usually called g(λ,ν))
(if the min point of x has λi = 0, then fi is inactive)

� Karush-Kuhn-Tucker (KKT) Conditions (that the
minimum point (x∗,λ∗,ν∗) must satisfy):
- Primal feasibility: fi(x

∗) ≤ 0 ∀i = 1, . . . ,mineq and
hi(x

∗) = 0 ∀i = 1, . . . ,meq

- Dual feasibility: λ∗i ≥ 0 ∀i = 1, . . . ,mineq

- Complementary slackness: λ∗i fi(x
∗) = 0 ∀i = 1, . . . ,mineq

(intuitively, either the min. pt. is on the boundary
(fi(x) = 0) or the constraint is inactive (λ∗i = 0))

- Vanishing gradient:
∇f0(x∗) +

∑mineq

i=1 λ∗i∇fi(x∗) +
∑meq

i=1 ν
∗
i∇hi(x∗) = 0

In the general case this is necessary but not sufficient, but
in the convex case it is both necessary and sufficient

� To solve a convex optimisation problem:
- write out the Lagrangian
- solve the dual problem by finding g(λ,ν), and then taking
the maximum over λ,ν

� E.g. Hard margin SVM: minimise (over θ, θ0) 1
2 ‖θ‖

2

subject to ∀t, yt
(
θTxt + θ0

)
≥ 1

- L(θ, θ0,λ) = 1
2‖θ‖

2 +
∑n
t=1 λt(1− yt(θ

Txt + θ0))

- ∂L
∂θ0

=
∑n
t=1(−λtyt) = 0 (equate to zero because we want

the min point)
- ∂L
∂θ = θ−

∑n
t=1(λtytxt) = 0 (equate to zero because we

want the min point), so θ∗ =
∑n
t=1(λtytxt)

- observe that at the min point,∑n
t=1 λt(1− yt(θ

Txt + θ0))

=
∑n
t=1 λt −

∑n
t=1 λtytθ

Txt −
∑n
t=1 λtytθ0

=
∑n
t=1 λt −

∑n
t=1 λtyt (

∑n
t=1(λtytxt))

T
xt − θ0

n∑
t=1

λtyt︸ ︷︷ ︸
=0

=
∑n
t=1 λt − (

∑n
s=1(λsysxs))

T ∑n
t=1 λtytxt

=
∑n
t=1 λt − ‖θ

∗‖2
- so at the min point, L(θ, θ0,λ) =

∑n
t=1 λt −

1
2‖θ‖

2 =∑n
t=1 λt −

1
2

∑n
s=1

∑n
t=1 λsλtysytx

T
s xt

- more formally,

g(λ) =
{∑n

t=1 λt−
1
2

∑n
s=1

∑n
t=1 λsλtysytx

T
s xt if

∑n
t=1 λtyt=0

−∞ otherwise

(since if
∑n
t=1 λtyt 6= 0 we can choose θ0 to be very big or

very small, in order to make θ0
∑n
t=1 λtyt → −∞)

- to find the maximum of g(λ) (over λ ≥ 0), solve
maximiseα

∑n
t=1 αt −

1
2

∑n
s=1

∑n
t=1 αsαtysyt x

T
s xt︸ ︷︷ ︸

kernelisable

subject

to αt ≥ 0 and
∑
t αtyt = 0

- then the classifier is θ =
∑n
t=1 αtytxt, and θ0 = 1

yt
− θTxt

for any point (xt, yt) where αt > 0 (i.e. yt(θ
Txt + θ0) = 1,

i.e. xt is a support vector)

� Computation of Primal vs Dual SVM:
Primal: Solving an optimisation problem with d variables
and n (or 2n) constraints (better for n� d)

Dual: Form n2

2 kernel values (each of the xs, xt pairs), then
solve an optimisation problem with n variables and n+ 1
constraints (better for d� n if can compute k(xs,xt)
efficiently)

Boosting

� Decision stump: A linear classifier where the classifier
must be either horizontal or vertical (with offset) (no
diagonal lines)
h(x;θ) := sgn(s(xk − θ0)) where θ = (s, k, θ0), where
s ∈ {−1, 1}, k ∈ {1, . . . , d}, θ0 ∈ R
(intuitively, s is the direction, k is the dimension index, θ0
is the threshold/offset)
- we want to determine good θ

� Combined classifier: ŷ := sgn
(∑M

m=1 αmh(x;θm)
)

where αm ≥ 0 are weights (i.e. the vote multiplier of base
learner m)

- we want to determine good θ1, . . . ,θM

� Adaboost algorithm for learning θ1, . . . ,θM and
α1, . . . , αM
- Input: D = {(xt, yt)}nt=1, number of iterations M
1. Init weights w0(t) := 1

n for t = 1, . . . , n
2. For m = 1, . . . ,M :
a. Choose h(·; θ̂m) as θ̂m := arg minθ

∑n
t=1

yt 6=h(xt;θ)
wm−1(t)

(i.e. minimise the weight of all misclassified points)
(note: arg minθ

∑n
t=1

yt 6=h(xt;θ)
wm−1(t) =

arg minθ

∑n
t=1(−yth(xt;θ))wm−1(t) since

−yth(xt;θ) = 2 · 1{yt 6= h(xt;θ)} − 1)
b. α̂m := 1

2 log 1−ε̂m
ε̂m

where ε̂m :=
∑n

t=1
yt 6=h(xt;θ̂m)

wm−1(t)

(plot of α̂m against ε̂m:
0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5
)

c. Update weights: wm(t) := 1
Zm

wm−1(t)e−yth(xt;θ̂m)α̂m

where Zm :=
∑n
t=1 wm−1(t)e−yth(xt;θ̂m)α̂m is the

normalization factor (i.e. we want
∑n
t=1 wm(t) = 1) (note:

eα̂m > 1 and e−α̂m < 1 since α̂m > 0, so it increases relative
weights for misclassified points w.r.t. current decision
stump)

3. The output classifier is fM (x) :=
∑M
m=1 α̂mh(x; θ̂m)

� Note: Adaboost never overfits points for some reason

� Training error: fraction of misclassified points:
1
n

∑n
t=1 1{ytfm(x) ≤ 0}

� Theorem: After M iterations,

training error ≤ exp
(
−2
∑M
m=1

(
1
2 − ε̂m

)2)
(in particular, if ε̂m ≤ 1

2 − γ ∀m, then
training error ≤ exp

(
−2Mγ2

)
; and since training error

must be a multiple of 1
n , if exp

(
−2Mγ2

)
< 1

n then training
error must be zero (i.e. everything classified correctly))

� Adaboost proof :
1. Bound 0-1 loss with the exponential loss:
1
n

∑n
t=1 1{ytfM (x) ≤ 0} ≤ 1

n

∑n
t=1 exp(−ytfM (x)) (proof:

it is obvious)
2. By weight update formula,

wM (t) = 1
n

∏M
m=1

exp(−yth(xt;θ̂m)α̂m)
Zm

=

1
n

exp(−
∑M
m=1 yth(xt;θ̂m)α̂m)∏M

m=1 Zm
= 1

n
exp(−ytfM (x))∏M

m=1 Zm

Hence 1 =
∑n
t=1 wM (t) = 1

n

∑n
t=1 exp(−ytfM (x))∏M

m=1 Zm
, and thus

1
n

∑n
t=1 exp(−ytfM (x)) =

∏M
m=1 Zm

Combining with step 1,
1
n

∑n
t=1 1{ytfM (x) ≤ 0} ≤

∏M
m=1 Zm

3. Zm =
∑n
t=1 wm−1(t)e−yth(xt;θ̂m)α̂m =∑

t:yt 6=h(xt;θ̂m) wm−1(t)eα̂m +
∑
t:yt=h(xt;θ̂m) wm−1(t)e−α̂m =

eα̂m
∑
t:yt 6=h(xt;θ̂m) wm−1(t) +

e−α̂m
∑
t:yt=h(xt;θ̂m) wm−1(t) = ε̂me

α̂m + (1− ε̂m)e−α̂m

So we want to pick α̂m to minimise Zm
(proof skipped... the optimum α̂m = 1

2 log 1−ε̂m
ε̂m

)
4. Substitute α̂m to step 3, and get

Zm = ε̂m

√
1−ε̂m
ε̂m

+ (1− ε̂m)
√

ε̂m
1−ε̂m = 2

√
ε̂m (1− ε̂m) =

√
1− (1− 2ε̂m)

2
= exp

(
1
2 log

(
1− (1− 2ε̂m)

2
))
≤

exp
(
− 1

2 (1− 2ε̂m)
2
)

= exp
(
−2
(
1
2 − ε̂m

)2)
(note: to remove log, use formula log(1 + a) ≤ a ∀a ∈ R)
5. Substitute into step 2 end, we get
1
n

∑n
t=1 1{ytfM (x) ≤ 0} ≤ exp

(
−2
∑M
m=1

(
1
2 − ε̂m

)2)
� Claim:

∑
t:yt 6=h(xt;θ̂m) wm(t) = 1

2 (hence the same θ̂ will

not be chosen twice in a row)
Proof: LHS = 1

2 ⇐⇒
∑n
t=1(−yth(xt;θ))wm(t) = 0, and

we have
∑n
t=1(−yth(xt;θ))wm(t) =∑

t:yt=h(xt;θ̂m) wm(t) +
∑
t:yt 6=h(xt;θ̂m)(−wm(t)) =∑

t:yt=h(xt;θ̂m)
1
Zm

wm−1(t)e−α̂m −∑
t:yt 6=h(xt;θ̂m)

1
Zm

wm−1(t)eα̂m =
1
Zm

(
e−α̂m (1− ε̂m)− eα̂m ε̂m

)
= 0 (last step is by definition

of α̂m being chosen to minimise the expression obtained in
step 3 of Adaboost proof)

Theory

Concentration

� Concentration: General idea: to show how well things
concentrate around the mean:
P[|Y −m| > t] ≤ TailBound(t)

� Consider Yn = 1
n

∑n
i=1Xi where E[Xi] = µ and

Var[Xi] = σ2 and Xi are i.i.d.
Law of large numbers: P[|Yn − µ| > ε]→ 0 as n→∞ for
any ε > 0
Central limit theorem: P[|Yn − µ| > α√

n
]→ 2Φ(−ασ) as

n→∞ where Φ is the standard normal c.d.f. (inaccurate
for very small probabilities)
Large deviations theory (important):

P[|Yn − µ| > ε] ≤ e−n·ψ(ε) (this is true for any ε and any n,
not just for large n)

� Basic inequalities:
Markov’s ineq.: If Z is a nonnegative rand. var., then

P[Z ≥ t] ≤ E[Z]
t

Markov’s ineq. for functions: If Z is a rand. var. and φ is a
nonnegative increasing function, then

P[Z ≥ t] ≤ P[φ(Z) ≥ φ(t)] ≤ E[φ(Z)]
φ(t)

Chebyshev’s ineq.: If Z is a rand. var., then

P[|Z − E[Z]| ≥ t] ≤ Var[Z]
t2 (proof by letting φ(t) = t2 and

replacing Z by |Z − E[Z]|)
Chernoff bound: If Z is a rand. var. and λ ≥ 0, then
P[Z ≥ t] ≤ e−λtE[eλZ] (proof by letting φ(t) = eλt)

� Sum of independent random variables:
Z = X1 + · · ·+Xn and Yn = 1

nZ where Xi are i.i.d.:

Chebyshev’s ineq.: P[|Yn − E[Yn]| ≥ ε] ≤ Var[X]
nε2

Chernoff bound: P[Z ≥ nε] ≤ exp(−n · ψ∗X(ε)) where
ψ∗X(t) = maxλ(λt− ψX(λ)) and ψX(λ) = LogE[eλX]

(e.g. for Gaussian (X ∼ N(0, σ2)), ψX(λ) = λ2σ2

2 , so

ψ∗X(t) = t2

2σ2 , so P[Z ≥ nε] ≤ exp
(
−nε

2

2σ2

)
, so

P[|Z| ≥ nε] ≤ 2 exp
(
−nε

2

2σ2

)
)

(note that for σ2-sub-Gaussian, we instead assume that

ψX(λ) ≤ λ2σ2

2 , and the same result holds)

� Hoeffding’s ineq.: Z = X1 + · · ·+Xn where Xi are i.i.d.
and Xi ∈ [ai, bi]:

P
[
1
n |Z − E[Z]| ≥ ε

]
≤ 2 exp

(
−2nε2

1
n

∑n
i=1(bi−ai)

2

)

If ai = a and bi = b for all i then:

P
[
1
n |Z − E[Z]| ≥ ε

]
≤ 2 exp

(
−2nε2
(b−a)2

)
If ai = 0 and bi = 1 for all i then:
P
[
1
n |Z − E[Z]| ≥ ε

]
≤ 2 exp

(
−2nε2

)
Statistical learning theory

� Underfitting: High training error (and hence high test
error)
Overfitting: Low training error but high test error

� Setup:
- Data drawn from distribution PXY (unknown), i.e.
D = {(xt, yt)}nt=1, where each (xt, yt) ∼ PXY and i.i.d.
- Loss function `(y, ŷ) where ŷ = f(x) (where f is our
classifier) (` could be any loss function)
- Training error (empirical risk):
Rn(f) = 1

n

∑n
t=1 `(yt, f(xt))

- Test error (true risk): R(f) = E[`(y, f(x))] where
(x, y) ∼ PXY

- R(f)︸ ︷︷ ︸
Test error

= Rnf︸︷︷︸
Training error

+ (R(f)−Rnf)︸ ︷︷ ︸
Generalisation error

(Generalisation error is large if we overfit)
- Consider algorithm that outputs f ∈ F (if F is too small
then we underfit; if F is too large then we overfit)

� Task: Let ferm = arg minf∈F Rn(f), want to find out if
ferm has small R(f) too? Will show that
R(ferm) ≤ R(f∗) + ε with probability ≥ 1− δ provided that
n ≥ n(ε, δ) (where f∗ = arg minf∈F R(f), and n is known
as the sample complexity) (called the “probably
approximately correct” (PAC) guarantee) (the analysis is
true even for the worst case PXY , so for good distributions,
it may be possible to use less data points)
F is PAC-learnable iff this is attainable for all ε > 0, δ > 0
with n <∞ (regardless of PXY) (when |F| is small enough,
this is usually possible)
Realisable: yi = f(xi) for all i, for some f ∈ F
Agnostic: Just compare with the (ideal) f∗ ∈ F (we usually
use this)

� PAC guarantee for finite F : If |F| <∞ and
`(y, ŷ) ∈ [0, 1], then F is PAC-learnable (i.e.
R(ferm) ≤ R(f∗) + ε with probability ≥ 1− δ) with

nF (ε, δ) = 2
ε2 log 2|F|

δ

(equivalently, R(ferm)−R(f∗) ≤ ε ≤
√

2
n log 2|F|

δ)

� Proof of PAC guarantee for finite F :
1. Fix f ∈ F . Let zi = `(yi, f(xi)) ∀i. Then since (xi, yi)
are i.i.d., zi is also i.i.d.. Since zi ∈ [0, 1], and
E[zi] = E[`(yi, f(xi))] = R(f), we apply Hoeffding’s ineq to
get P

[∣∣ 1
n

∑n
i=1 zi −R(f)

∣∣ > ε0
]
≤ 2 exp

(
−2nε20

)
. Then

observe that 1
n

∑n
i=1 zi = 1

n

∑n
i=1 `(yi, f(xi)) = Rn(f), so

P [|Rn(f)−R(f)| > ε0] ≤ 2 exp
(
−2nε20

)
.

2. Take the union bound:
P
[⋃

f∈F {|Rn(f)−R(f)| > ε0}
]
≤ 2 |F| exp

(
−2nε20

)
3. So we pick δ = 2 |F| exp

(
−2nε20

)
, so n = 1

2ε20
log 2|F|

δ .

4. Suppose |Rn(f)−R(f)| ≤ ε0 ∀f ∈ F (holds with
probability ≥ 1− δ), then: R(ferm)−R(f∗) =
R(ferm)−Rn(ferm)︸ ︷︷ ︸

≤ε0

+Rn(ferm)−Rn(f∗)︸ ︷︷ ︸
≤0

+Rn(f∗)−R(f∗)︸ ︷︷ ︸
≤ε0

≤ 2ε0. Hence we let ε := 2ε0, so n = 2
2ε2 log 2|F|

δ .

� Shattering: A set of points x1, . . . ,xk is said to be
shattered by F if |{(f(x1), . . . , f(xk)) | f ∈ F}| = 2k

� VC Dimension: dVC = dVC(F) = largest k such that
∃x1, . . . ,xk that F shatters (i.e. largest k such that
∃x1, . . . ,xk for which all combinations of labels (i.e.
f(x1), . . . , f(xk)) can be produced by classifiers in F)
(to determine the VC dimension, must show that k works
but k + 1 does not work)

� Corollary for Finite F : If F is finite, dVC ≤ log2 |F|

� Sauer’s lemma: Effective #f in F ≤
∑dVC

i=0

(
n
i

)
Slightly weaker version: Effective #f in F ≤ (n+ 1)dVC

� PAC guarantee for infinite F : Assuming 0-1 loss, F is

PAC-learnable with nF (ε, δ) = C · dVC(F)+log 1
δ

ε2

� Converse guarantee: If dVC =∞, then F is not
PAC-learnable (though there may be certain choices of PXY

where learning might still work)

� Examples
- Linear classifier (without offset): dVC = d (the dimension
of the space)
- Linear classifier (with offset): dVC = d+ 1

Unsupervised Learning

� Training data: D = {xt}nt=1

� K-means clustering:
Goal: Partition D into clusters D1, . . . ,Dk such that the
associated cluster centres µ1, . . . ,µK ∈ Rd minimise

J
(
{Dj}Kj=1, {µj}Kj=1

)
=
∑K
j=1

∑
x∈Dj

∥∥x− µj
∥∥2 (i.e.

minimise the sum of squared distance from the respective
cluster centres)

� K-means algorithm:
1. Minimise J

(
{Dj}Kj=1, {µj}Kj=1

)
w.r.t. {Dj}Kj=1 for fixed

{µj}Kj=1 (i.e. associate each data point with the cluster
centre closest to it)
2. Minimise J

(
{Dj}Kj=1, {µj}Kj=1

)
w.r.t. {µj}Kj=1 for fixed

{Dj}Kj=1 (i.e. set each cluster centre to the mean of the

data points associated with it, i.e. µj = 1
|Dj |

∑
x∈Dj x)

3. Repeat until no change
Notes:
- initially, choose {µj}Kj=1 at random
- K-means finds a local minimum for J

� Distribution learning:
Goal: Estimate a distribution p̂(x) that models the data
well (either p.m.f. (discrete) or p.d.f. (continuous))
- assume p(x) is determined by θ, i.e. p(x;θ)

- to find θ̂, we use maximum likelihood, i.e.
θ̂ = arg maxθ

∏n
t=1 p(xt;θ) = arg maxθ

∑n
t=1 log p(xt;θ)

